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Abstract. A one-dimensional model for two-band SU(2) bosons with isospin exchange interaction is solved
by means of the nested Bethe-ansatz method. The features of the ground state and low-lying excitation
state are discussed explicitly by numerical and analytical method. The thermodynamics of the system is
analyzed by means of the thermodynamic Bethe-ansatz method, and some physical quantities, such as
magnetization, specific heat, etc. are obtained explicitly in some special cases.

PACS. 03.65.-w Quantum mechanics – 72.15.Nj Collective modes (e.g., in one-dimensional conductors) –
03.65.Ge Solutions of wave equations: bound states

1 Introduction

Exactly solvable models play a special role in the con-
densed matter physics [1], not only because their exact
results can be compared with experimental data in an ex-
act way, but also they provide the paradigms that en-
rich much of our physical intuition. The models typi-
cally include Heisenberg chain [2], Hubbard chain [3], and
δ-interaction Fermi and Bose gas [4,5] in one dimension.
The first one can be solved by means of the algebraic
Bethe-ansatz method, while the others can be diagonal-
ized by the nested Bethe-ansatz method. However, in the
development of the coordinate Bethe-ansatz method, the
problem was only applied to the scalar Bose gas [6], since
people generally regard a boson as a particle without in-
ternal degree of freedom. While in the recent experiments
on Bose-Einstein condensation, a two-component Bose gas
has been produced in magnetically trapped 87Rb by ro-
tating the two hyperfine states into each other with the
help of slightly detuned Rabi oscillation field [7], and it
was noticed that the properties of such Bose system are
different from the traditional scalar Bose system once it
acquires internal degree of freedom. Thus it is worthwhile
to study the problem in the presence of internal degree
of freedom. For example, the work [8] co-authored by
two of the present authors show that the ground state
of two-component bosons in one-dimension differs com-
pletely from that of fermion systems, it is a ferromagnetic
state for the former, while a singlet for the later.

In this paper we study SU(2)×SU(2) with δ-interaction
bosons in one dimension. That is, besides the isospin
degree of freedom, each boson possesses two-level band
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degree of freedom. It is therefore similar to electrons in
transition metal oxides [9], which possess spin degree of
freedom as well as orbital degree of freedom. In the forth-
coming section, we introduce the model, and solve it in
term of the nested Bethe-ansatz method. In Section 3, we
study the properties of the ground state and show that the
ground state of the present model is ferromagnetic both
in isospin and band spaces. In Section 4, all possible low-
lying excitations are studied both numerically and analyt-
ically, four possible elementary excitations are given. The
thermodynamics of the system are discussed in Section 5
with the strategy of the thermodynamic Bethe-ansatz [10].
A general formula of the free energy, as well as thermody-
namic Bethe-ansatz equations are obtained. In Section 6,
some special cases, such as strong coupling limit are stud-
ied. Finally, a brief summary and acknowledgement are
given in Section 7.

2 The model and its Bethe-ansatz solution

We consider a model of two-band bosons with two-fold
internal degree of freedom trapped in one-dimensional ring
of length L, whose Hamiltonian reads

H =
∫
dx


∑

a,b

∂xψ
∗
a,b∂xψa,b

+
c

2
P̂s

∑
a,b,a′,b′

ψ∗
a,bψa,bψ

∗
a′,b′ψa′,b′


 . (1)

Here a, a′ =↑, ↓ and b, b′ = 1, 2 denote the isospin index
and band index respectively, and natural unit is adopted
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for simplicity, c is the coupling constant of isospin ex-
change P̂s interaction. At the same time, those fields op-
erators satisfy the bosonic commutation relation with pe-
riodic boundary conditions

[
ψ∗

a,b, ψa′,b′
]

=
∑

n

δaa′δbb′δ(x− y − nL). (2)

In terms of the group theory, we represent the generators
of the isospin su(2) Lie algebra and that of the band su(2)
Lie algebra by T and U respectively, i.e. [T+, T−] = 2T z

and [U+, U−] = 2Uz. Then, with the help of these gen-
erators, the internal state of the field can be transformed
into each other by the following relation

T+| ↓〉 = | ↑〉, T−| ↓〉 = | ↑〉,
U+|1〉 = |2〉, U−|2〉 = |1〉. (3)

According to the nested Bethe-ansatz, in domain xj �=
xj+1, we have the Hamiltonian of N free particles, whose
eigenstate is simply the superposition of plane waves.
Then for a given region with 0 < xQ1 < xQ2 < · · · <
xQN < L, the Bethe-ansatz wave function can be writ-
ten as:

ψa(x) =
∑

P∈SN

Aa,b(P ;Q)ei(Pk|Qx), (4)

here a = (a1, a2, · · · , aN ) and b = (b1, b2, · · · , bN ) de-
note the index-sequence of the isospin and band respec-
tively, Pk = (kP1, kP2, · · · , kPN ) is the momentum of
all bosons under arbitrary permutation P and Qx =
(xQ1, xQ2, · · · , xQN ) is the region of all bosons under ar-
bitrary permutation Q, and

(Pk|Qx) = kP1xQ1 + kP2xQ2 + · · · + kPNxQN ,

For bosonic system, the wave function should be symmet-
ric under permutation of both coordinates and internal
degree of freedom, that is

(σ
′
jψ)a,b(x) = ψa,b(x). (5)

Here σ
′
ψ represents

σ
′
ja :{a1 · · ·ajaj+1 · · · aN} → {a1 · · ·aj+1aj · · · aN},

σ
′
jb :{b1 · · · bjbj+1 · · · bN} → {b1 · · · bj+1bj · · · bN},

σ
′
jx :{xQ1 · · ·xQjxQj+1 · · ·xQN } →

{xQ1 · · ·xQj+1xQj · · ·xQN }.
Using the above relation and the rearrangement theorem
in group theory, we have the following consequence from
equation (4)

A(P ;σ
′
Q) = P̂sP̂tA(σ

′
P ;Q), (6)

where P̂s and P̂t are the exchange operators for the isospin
and band respectively. The discontinuity condition of the

first derivative for the wave function at xj = xj+1 plane
gives rise to

i
(
(Pk)j − (Pk)j+1

)[
Aa(P ;σ

′
Q) −Aa(σ

′
P ;σ

′
Q)

−Aa(P ;Q) +Aa(σ
′
P ;Q)

]
=

cP̂s

[
Aa(P ;σ

′
Q) +Aa(σ

′
P ;σ

′
Q)

+Aa(P ;Q) +Aa(σ
′
P ;Q)

]
. (7)

Then, together with the relations equations (5)
and (7), the scattering matrix of the present model can
be written as

A(σ′P ;Q) =

[(Pk)j − (Pk)j+1] − ic

[(Pk)j − (Pk)j+1] + ic
· [(Pk)j − (Pk)j+1]P̂s − ic

[(Pk)j − (Pk)j+1] − ic

× [(Pk)j − (Pk)j+1]P̂t − ic

[(Pk)j − (Pk)j+1] − ic
A(P ;Q). (8)

Applying the periodic boundary conditions
ψa,b(. . . , xQj , . . . ) = ψa,b(. . . , xQj + L, . . . ) and making
use of the standard procedure of the QISM [11], we then
obtain the Bethe-ansatz solution of the present model

eikjL = −
N∏

l=1

kj − kl + ic

kj − kl − ic

M∏
α=1

kj − λα − ic/2
kj − λα + ic/2

×
M ′∏
β=1

kj − νβ − ic/2
kj − νβ + ic/2

,

1 = −
N∏

l=1

λγ − kl + ic/2
λγ − kl − ic/2

M∏
α=1

λγ − λα + ic

λγ − λα − ic
,

1 = −
N∏

l=1

νc − kl + ic/2
νc − kl − ic/2

M ′∏
β=1

νc − νβ + ic

νc − νβ − ic
. (9)

Here N denotes for the total number of charge rapidi-
ties kj , M for isospin rapidities λα, and M ′ for band
rapidities νβ . Here we would like to point out that the
Bethe-ansatz solution just represents the highest (or low-
est) weight state in irreducible representation of both
isospin SU(2) cross band SU(2), the other states in the
subspace can be found by the ladder operators of global
SU(2)×SU(2) algebra. And in such a state, there are
N − M particles in | ↑〉 and M in | ↓〉; N − M ′ in |1〉
and M ′ in |2〉.
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The logarithm of the equations (9) give rise to

kjL = 2πIj +
N∑

l=1

Θ1(kj − kl) +
M∑

α=1

Θ−1/2(kj − λα)

+
M ′∑
β=1

Θ−1/2(kj − νβ),

2πJγ =
N∑

l=1

Θ−1/2(λγ − kl) +
M∑

α=1

Θ1(λγ − λα),

2πJ ′
c =

N∑
l=1

Θ−1/2(νc − kl) +
M ′∑
β=1

Θ1(νc − νβ). (10)

Here Θn(x) = −2 tan−1(x/nc). The quantum number Ij
of charge rapidities kj take integer or half-odd-integer de-
pending on N−M−M ′ is odd or even, while Jγ of isospin
rapidities λγ and J ′

c of band rapidities νβ take integer or
half-odd-integer depending on N −M is odd or even and
N−M ′ is odd or even, respectively. Once the Bethe-ansatz
equations are solved, one can calculate the eigenenergy

E =
N∑

j=1

k2
i , (11)

as well as the total momentum

P =
2π
L


 N∑

j=1

Ij −
M∑

γ=1

Jγ −
M ′∑
c=1

J ′
c


 . (12)

For a large system, it is convenient to define the densities
of rapidities ρ(k), σ(λ) and ω(ν),

ρ(kj) =
1

L(kj+1 − kj)
,

σ(λγ) =
1

L(λγ+1 − λγ)
,

ω(νc) =
1

L(νc+1 − νc)
. (13)

Then the energy and momentum of the system take the
form

E

L
=

∫
k2ρ(k)dk,

P

L
=

∫
kρ(k)dk. (14)

and N,M,M ′ in the equations (9) become

N

L
=

∫
ρ(k)dk,

M

L
=

∫
σ(λ)dλ,

M ′

L
=

∫
ω(ν)dν. (15)

In terms of the group theory, the highest weight state
of SU(2) representation can be labelled by (N − 2M,N −
2M ′), so the Zeeman term caused by uniform SU(2) ex-
ternal field h is given by

Hzee = −hgt

2
(N − 2M) − hgu

2
(N − 2M ′)

= − (hgt + hgu)L
2

∫
ρ(k)dk + hgtL

×
∫
σ(λ)dλ + hguL

∫
ω(ν)dν, (16)

where gt and gu are Landé g factors for the isospin and
band respectively. If we can take h1 = −hgt, h2 = −hgu,
then equation (16) can be rewritten as

Hzee =
(h1 + h2)L

2

∫
ρ(k)dk − h1L

×
∫
σ(λ)dλ − h2L

∫
ω(ν)dν. (17)

3 The ground state

From equation (11), we conclude that charge rapidities at
the ground state form a “Fermi” sea and its’ center point is
zero. Moreover, it is easy to show that the quantum num-
ber Ij in equation (10) is a monotonically increasing func-
tion of kj , so the quantum number {Ij} at the ground state
is given by a set of successive integers or half-odd-integers
symmetrically arranged around zero, i.e. Ij+1 − Ij = 1. In
order to study the properties of Jγ and J ′

c, let us consider
equation (10) in the weak-coupling limit c → 0+. Using
limc→0+ Θ±n(x) → ∓πsgn(x), equation (10) becomes

2Ij =
kjL

π
+

N∑
l=1

sgn(kj − kl)

−
M∑

α=1

sgn(kj − λα) −
M ′∑
β=1

sgn(kj − νβ),

2Jγ =
N∑

l=1

sgn(λγ − kl) −
M∑

α=1

sgn(λγ − λα),

2J ′
c =

N∑
l=1

sgn(νc − kl) −
M ′∑
β=1

sgn(νc − νβ). (18)

We choose the subscripts of the rapidities kj , λγ , νc in a
monotonically increasing order as the same as Ij , Jγ , J

′
c,
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then we get

2(Ij+1 − Ij − 1) =
(kj+1 − kj)L

π
−

M∑
α=1

[
sgn(kj+1 − λα)

− sgn(kj − λα)
] −

M∑
β=1

[
sgn(kj+1

− νβ) − sgn(kj − νβ)
]
,

2(Jγ+1 − Jγ + 1) =
N∑

l=1

[sgn(λγ+1 − kl) − sgn(λγ − kl)] ,

2(J ′
c+1 − J ′

c + 1) =
N∑

l=1

[sgn(νc+1 − kl) − sgn(νc − kl)].

(19)

Obviously, for Ij+1 − Ij = n, there will be kj+1 − kj =
2π(n − 1)/L, if there exists a λγ or a νβ between kj

and kj+1, then kj+1 − kj = 2πn/L. ForJγ+1 − Jγ = m,
there must exist exactly m + 1 solutions of kl satisfying
λγ < kl < λγ+1, and J ′

c+1 − J ′
c = m′, then there will be

m′ +1 solutions of kl satisfying νc < kl < νc+1. So we can
see that an existing λγ or νβ will suppress the density of
states in k-space at k = λγ or k = νβ . Solving equation
(10) numerically, we get the density of state in k-space.
The result in the absence of isospin rapidity is plotted in
Figure 1 and that in the presence of one isospin rapidity
is plotted in Figure 2. Thus the more the isospin rapidi-
ties or band rapidities exist the higher the energy will be.
Consequently the ground state of SU(2)×SU(2) interact-
ing bosons is an isospin-band “ferromagnetic” state. Due
to the permutation symmetries, we can use the group the-
ory to characterize the ground state (M = M ′ = 0) with a
one-row N -column Young tableau, of which the quantum
numbers are

{Ij} :=
{
− (N − 1)

2
, · · · , (N − 1)

2

}
and

Jγ = J ′
c = empty. (20)

Correspondingly, the density ρ0(k) of the ground state can
be written as

ρ0(k) =
1
2π

+
∫ kF

−kF

K2(k − k′)ρ0(k′)dk′, (21)

where kF is the quasi-Fermi momentum determined by
the conservation of the total particle number

∫ kF

−kF

ρ(k)dk =
N

L
,

and
Kn(x) =

1
π

nc/2
n2c2/4 + x2

. (22)

In terms of density function, the ground state energy then
can be calculated by

E0

L
=

∫ kF

−kF

k2ρ0(k)dk. (23)
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Fig. 1. The density of state in k-space for the ground state.
The distribution changes from a histogram to a narrow peak
gradually for the coupling from strong to weak. The figure is
plotted for N = L = 100 and c = 10, 1, 0.1, 0.01.
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Fig. 2. The density of state in k-space for the ground state
in the presence of one isospin rapidity by choosing J1 = 1.
The distribution changes from a histogram to a narrow peak
gradually for the coupling from strong to weak. The figure is
plotted for N = L = 100 and c = 10, 1, 0.1, 0.01.

It is also useful to consider the problem in strong-
coupling limit, i.e. c → ∞. If M = M ′ = 0, then the
secular equations become

kjL = 2πIj +
N∑

l=1

Θ1(kj − kl), (24)

if there exists one λ rapidity (or one ν rapidity), the quan-
tum number of charge rapidities will change from integer
to half-integer, or vise versa, that is Ij − I ′j = 1/2. Then
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Fig. 3. The holon-particle excitation spectrum calculated for a system of N = L = 61.

we have

k′jL = 2πI ′j +
N∑

l=1

Θ1(k′j − k′l) +Θ−1/2(k′j − λ1). (25)

As c → ∞, tan−1 x/c � x/c, so the above two equations
become

(kj+1 − kj)L
[
1 +

2N
Lc

]
= 2π, (26)

(k′j+1 − k′j)L
[
1 +

2(N − 2)
Lc

]
= 2π.

Now we can see that the density distribution 1/L(kj+1 −
kj) of k for M = 1 is smaller than that for M = 0. So
the eigenenergy of the latter case is larger than the for-
mer. This also supports our previous conclusion obtained
in weak-coupling limit. Clearly the ferromagnetic ground
state of SU(2)×SU(2) Bose system is completely different
from that of Fermi system.

4 Low-lying excited states

The low-lying excitation states can be obtained by the
variation of the quantum number configuration from that
of the ground state.

4.1 Holon-particle excitation

The first case we consider is to remove one Ij from the
quantum number configuration of the ground state, then
add it outside the sequence. We call it holon-particle exci-
tation, since it creates a holon under the Fermi point and
a particle outside it. Obviously, both freedom of isospin
and band keep unchanged in this type of excitation, i.e.
M = 0,M ′ = 0, and the corresponding quantum number
configuration is

{Ij} = {−(N − 1)/2, · · · , (N − 1)/2, In},
where |In| > (N − 1)/2.

We show the numerical result of the momentum-energy
spectra of this type of excitation for a system with L =
N = 61 in Figure 3, from which we can see that there is
also a minimum in the spectra at P = 2π except P = 0.
This is because if we replace I1 or IN by (N + 1)/2, the
two excitation states almost have the same energy though
their momentum difference is 2π. This phenomena can also
be interpreted from the periodic boundary conditions of
the system. Moreover, the overall structure of the spectra
is not changed very much between c = 1 and c = 10, this
is due to both the excitation energy of holon and particle
increase when c increases. Replacing I0

N = (N − 1)/2 by
I0
N = (N − 1)/2 + n, n = 1, 2 · · · and keeping the other

quantum numbers unchanged, we could get a dispersion
relation of particle. While replacing I0

n (n = 1, 2 · · ·N)
in turn by (N + 1)/2, we can also obtain the dispersion
relation of the holon. In Figure 3, they are just the left
boundary and bottom boundary of the energy spectra.

In the thermodynamic limit, if we define ρ(k) =
ρ0(k) + ρ1(k)/L, where ρ1(k)/L is the variation of the
density of the ground state, then the state with one hole
inside the quasi-Fermi sea kF and an additional kp outside
kF satisfy:

ρ1(k)+ δ(k− k̄) =
∫ kF

−kF

dk′ρ1(k′)K2(k−k′)+K2(k−kp),

(27)
and the excitation energy becomes ∆E =

∫
k2ρ1(k)dk +

k2
p = εh(k̄) + εa(kp), where εh is holon’s energy and
εa(kp) = εh(kp) is particle’s energy, they can be calcu-
lated by

εh(k̄) = −k̄2 +
∫ kF

−kF

k2ρh
1 (k, k̄)dk, (28)

ρh
1 (k, k̄) = −K2(k − k̄) +

∫ kF

−kF

K2(k − k′)ρh
1 (k′, k̄)dk′.

(29)
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Fig. 4. The holon-isospinon excitation spectrum calculated for a system of N = L = 61.

4.2 Holon-isospinon excitation

If we remove one of Ij from the configuration of the ground
state and add a λ rapidity to the background of the fer-
romagnetic ground state, i.e. (M = 1,M ′ = 0), then we
can get the excitation with one hole in the Fermi sea of
k rapidities and a particle (we call it isospinon hereafter)
in λ space. The corresponding quantum number will be

I1 = −N
2

+ δ1,j1 , 1 ≤ j1 ≤ N + 1

Ij = Ij−1 + 1 + δj,j1 , (j = 2, · · ·N). (30)

In comparison to the ground state, the quantum num-
ber of charge rapidities changes from half-odd-integer to
integer, or vice versa. We show the numerical results of
momentum-energy spectra of this type of excitation in
Figure 4. There exist remarkable difference in the spec-
tra between weak and strong coupling. We interpret this
due to that the dependence of the dispersion relation of
isospinon and holon on the coupling are quite different.

In the thermodynamic limit, we can use ρ1 to describe
the excitation energy ∆E =

∫
k2ρ1(k)dk where

ρ1(k) + δ(k − k̄) =
∫
K2(k − kl)ρ1(kl)dkl −K1(k − λ1),

(31)
the energy of the holon-isospinon excitation can be written
down with∆E = εh(k̄)+εc(λ), εh is same to equation (28)
and

εc(λ) =
∫
k2ρc

1(k, λ)dk, (32)

with

ρc
1(k, λ) = −K1(k−λ)+

∫ kF

−kF

K2(k−k′)ρc
1(k

′, λ)dk′. (33)

Another type of excitation which is mathematically
equivalent to this type of excitation is the holon-bandon
excitation, in which an additional ν rapidity is added to
the ferromagnetic ground state in stead of λ. Its excitation
spectra is the same to that presented in Figure 4. That is
to say, a rift emerges at the position of the isospin rapidity
for small c that is consistent with our previous analysis for
weak coupling.

4.3 Isospinon-isospinon excitation

If we flip the isospin of two bosons down, and keep the
ground state configuration of k rapidities unchanged, we
can obtain collective excitations with two isospinons in
the isospin space. That is M = 2,M ′ = 0 with two
additional λ1, λ2, whose corresponding quantum number
satisfy −(N − 1)/2 < J1 < J2 < (N − 1)/2. We show
the numerical results of momentum-energy spectra of this
type of excitation in Figure 5. Clearly, the whole struc-
ture of two spectra in strong-coupling and weak-coupling
do not change much. Moreover, differing from the behav-
ior of holon-particle excitation, the excitation energy of
isospinon-isospinon decreases when c increases.

In the thermodynamic limit, the excitation energy
can be calculated by ∆E =

∫
k2ρc

1(k, λ1, λ2)dk, in which
ρc
1(k, λ1, λ2) satisfy

ρc
1(k, λ1, λ2) = −K1(k − λ1) −K1(k − λ2)

+
∫ kF

−kF

K2(k − k′)ρc
1(k

′, λ1, λ2)dk′, (34)

4.4 Isospinon-bandon excitation

If we flip one isospin down and one band down, we can ob-
tain another two-parameter excitation, which include one
collective mode in isospin space and one in band space,
called isospinon and bandon respectively. The energy spec-
tra is determined by ∆E =

∫
k2ρc

1(k, λ1, ν1)dk in which
ρc
1(k, λ1, ν1) satisfy

ρc
1(k, λ1, ν1) = −K1(k − λ1) −K1(k − ν1)

+
∫ kF

−kF

K2(k − k′)ρc
1(k

′, λ1, ν1)dk′,

It is interesting that the numerical results of this type of
excitation are almost the same as the isospinon-isospinon
excitation (see Fig. 5).

In above, we found that there are four elementary ex-
citations: holon, particle, isospinon, and bandon at low
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Fig. 5. The isospinon-isospinon excitation spectrum calculated for a system of N = L = 61.

energy scale in this system. And from the energy spectra
of the above figures, we can conclude that each elemen-
tary excitations are all gapless. Moreover, we found that
the energy spectra contributed by isospin and band de-
gree of freedom completely differ from that of electronic
system with both spin and orbital degree of freedom [12].
This is because, for the later, the singlet ground state
form a Fermi sea of quasi particles, which leads to a linear
dispersion relation of elementary excitations. While for
the former, the collective excitation from the ferromag-
netic ground state has a quadratic dispersion relation (see
Fig. 5). And in a large system, two elementary excitations
in the same sector, therefore, are almost independent. It
is just the reason why the spectra of isospinon-isospinon
excitation is almost degenerate with that of isospinon-
bandon excitation.

5 Thermodynamics at finite temperature

The above discussion are all based on the real roots of
the Bethe-ansatz equations, in order to discuss the ther-
modynamics of the system, we need to consider all possi-
ble states described by the Bethe-ansatz solution, among
which there may exist complex roots of λ and ν. By con-
sidering the consistency of the Bethe-ansatz equations, in
the thermodynamic limit, the isospin and band rapidities
can form a bound state with another one define by

Λnp
a = λn

a +iu(n+ 1−2p) +O(exp(−δN)), p = 1, 2 · · ·n
Unp

a = νn
a +iu(n+ 1−2p) +O(exp(−δN)), p = 1, 2 · · ·n

(35)

where u = c/2, and they are called λ string and ν string
with the length n. λn

a and νn
a are real parameters repre-

senting the motion of the center of mass of the correspond-
ing bound state. Let Mn and M ′

n denote the number of
λ n-strings and ν n-strings respectively, then the total
number of λ and ν are

M =
∞∑

n=1

nMn, M ′ =
∞∑

n=1

nM ′
n, (36)

respectively. Then with the help of equations (35), the
Bethe-ansatz equations (10) become

kjL = 2πIj +
N∑

p=1

Θ1(kj − kp)

+
∑
na

Θ−n/2(kj − λn
a ) +

∑
na

Θ−n/2(kj − νn
a ),

2πJn
γ =

∑
p

Θ−n/2(λn
a − kp) +

∑
pbt�=0

AnptΘt/2(λn
a − λp

b ),

2πJ ′n
c =

∑
p

Θ−n/2(νn
a − kp) +

∑
cpt�=0

AnptΘt/2(νn
a − νp

c ).

(37)

where

Anpt =




1 for t = n+ p, | n− p |
2 for t = n+ p− 2, · · · | n− p | +2

0 otherwise

and quantum number {Ij , Jn
γ , J ′n

c } label the eigenstate of
the system. As a quantum number may be represented as
a particle or hole in corresponding space, this determines
that the rapidities obey Fermi statistics. In the thermo-
dynamic limit the distribution of rapidities becomes dense
and it is useful to introduce density functions for the par-
ticles and holes of each class of rapidities. Denoting the
densities for charge rapidity by ρ(k) and ρh(k), the den-
sities for isospin rapidities by σn(λ) and σh

n(λ), for band
rapidities by ωn(ν) and ωh

n(ν), we define:

ρ(k) + ρh(k) =
1
L

dI(k)
dk

,

σn(λ) + σh
n(λ) =

1
L

dJn(λ)
dλ

,

ωn(ν) + ωh
n(ν) =

1
L

dJ ′n(ν)
dν

. (38)
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Then equations (37) gives rise to the following coupled
integral equations

ρ+ ρh =
1
2π

+
∫
K2(k − k′)ρ(k′)dk′

−
∑

n

∫
Kn(k − λ)σn(λ)dλ

−
∑

n

∫
Kn(k − ν)ωn(ν)dν,

σh
n =

∫
K2(λ− k′)ρ(k′)dk′

−
∑
pt�=0

Anpt

∫
Kt(λ− λ′)σp(λ′)dλ′,

ωh
n =

∫
Kn(ν − k′)ρ(k′)dk′

−
∑
pt�=0

Anpt

∫
Kt(ν − ν′)ωp(ν′)dν′. (39)

In terms of the definition (38), the total number of λ and
ν rapidities can be rewritten as

M

L
=

∑
n

n

∫
σn(λ)dλ,

M ′

L
=

∑
n

n

∫
ωn(ν)dν, (40)

and the z-components of T z and Uz

T z

L
=

1
2

∫
ρ(k)dk −

∑
n

n

∫
σn(λ)dλ,

Uz

L
=

1
2

∫
ρ(k)dk −

∑
n

n

∫
ωn(ν)dν. (41)

The thermal equilibrium is obtained by minimizing the
free energy F = E−Ezee−TS−µN at finite temperature,
where µ is the chemical potential, S is the entropy of the
system, and Ezee is the zeeman energy. According to the
strategy of Yang, the entropy of the present model can be
written as

S/L =
∫

[(ρ+ ρh) ln(ρ+ ρh) − ρ ln ρ− ρh ln ρh]dk

+
∑

n

∫
[(σn + σh

n) ln(σn + σh
n) − σn lnσn

− σh
n lnσh

n]dλ+
∑

n

∫
[(ωn + ωh

n) ln(ωn + ωh
n)

− ωn lnωn − ωh
n lnωh

n]dν. (42)

and the Zeeman energy is

Ezee = h1T
z + h2U

z. (43)

The minimization of the free energy (δF = 0) yields the
following integral equations for the energy potentials:

ε(k) = k2 − µ− 1
2
(h1 + h2)

− T

∫
K2(k − k′) ln(1 + e−ε(k′)/T )dk′

+
∑

n

Kn(k − λ) ln(1 + e−ϕ(λ)/T )dλ

+
∑

n

Kn(k − ν) ln(1 + e−κ(ν)/T )dν, (44)

ϕn(λ) = −h1n− T

∫
Kn(λ− k) ln(1 + e−ε(k)/T )dk

+ T
∑
pt�=0

Anpt

∫
Kt(λ− λ′) ln(1 + e−ϕ(λ′)/T )dλ′,

κn(ν) = −h2n− T

∫
Kn(ν − k) ln(1 + e−ε(k)/T )dk

+ T
∑
pt�=0

Anpt

∫
Kt(ν − ν′) ln(1 + e−κ(ν′)/T )dν′.

where

ρh(k)
ρ(k)

= δ(k) = e
ε(k)

T ,
σh

n(λ)
σn(λ)

= ηn(λ) = e
ϕn(λ)

T ,

ωh
n(ν)
ωn(ν)

= ∆n(ν) = e
κn(ω)

T . (45)

The Fourier transformation of equation (44) are

T ln δ = k2 − µ− 1
2
(h1 + h2) − TK2(k − k′) ∗ ln(1 + δ−1)

+
∑

n

TKn(k − λ) ∗ ln(1 + ηn−1),

+
∑

n

TKn(k − ν) ∗ ln(1 +∆n−1),

ln η1 =
1
4u

sech
πλ

2u
∗ [

ln(1 + δ−1)(1 + η2)
]
,

ln ηn =
1
4u

sech
πλ

2u
∗ [ln(1 + ηn+1)(1 + ηn−1)] ,

ln∆1 =
1
4u

sech
πλ

2u
∗ [

ln(1 + δ−1)(1 + ∆2)
]
,

ln∆n =
1
4u

sech
πλ

2u
∗ [ln(1 + ∆n+1)(1 + ∆n−1)] . (46)

with the asymptotic conditions

lim
n→∞

[
ln
ηn

n

]
= −h1

T
, lim

n→∞

[
ln
∆n

n

]
= −h2

T
. (47)
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From the definition of the Helmholz free energy F = E −
TS, it is not difficult to obtain

F = µ− LT

2π

∫
ln

[
1 + e−ε(k)/T

]
dk (48)

and the pressure of the system

P = −∂F
∂L

=
T

2π

∫
ln

[
1 + e−ε(k)/T

]
dk, (49)

whose expression is the same as other models but equa-
tion (44) that ε(k) fulfils is different.

6 Some special limits

According to the statistic mechanics, once the free en-
ergy is obtained explicitly, all other physical quantities
can also be evaluated in principle. However, since the ex-
plicit expression of ε(k) in equations (44) is still difficult
to be solved analytically, we can not analyze the physical
properties directly. In the following, we will discuss some
special cases, such as high temperature limit and strong
coupling limit, etc.

6.1 High-temperature limit

When T → ∞, ρ/ρh = δ−1 → 1, we consider all func-
tions ηn(λ) and ∆n(ν) are independent of their respective
parameter. Using limu→0 sech(πλ/2u)/2u = δ(λ) and sub-
stituting it into equation (46), we have

η2
1 = 1 + η2, η2

n = (1 + ηn+1)(1 + ηn−1),

∆2
1 = 1 +∆2, ∆2

n = (1 +∆n+1)(1 +∆n−1). (50)

Taking Fourier transform to equation (39)

σ1 + σh
1 =

1
4u

sech
πλ

2u
∗ (ρ+ σh

2 ),

σn + σh
n =

1
4u

sech
πλ

2u
∗ (σh

n+1 + σh
n−1),

ω1 + ωh
1 =

1
4u

sech
πλ

2u
∗ (ρ+ ωh

2 ),

ωn + ωh
n =

1
4u

sech
πλ

2u
∗ (ωh

n+1 + ωh
n−1), (51)

and letting u = 0 (considering the weak-coupling limit)
then we could get the following relation:

∑
n

nσn =
1
2

[
ρ− (nm + 1)σnme

−nmh1
T

]
,

∑
n

nωn =
1
2

[
ρ− (n′

m + 1)ωn′
m
e

−n′
mh2
T

]
, (52)

here nm and n′
m are the maximal length of λ string and

ν string. In the limit of weak field, equation (52) can

be transformed into the expressions of n-strings external
field (41), then we can get the z-components magnetiza-
tion of SU(2)

T z

L
=

∫
nm + 1

2
σnm

[
1 − nmh1

T
+

1
2
nmh1

T

2

+ · · ·
]
dλ,

Uz

L
=

∫
n′

m + 1
2

ωn′
m

[
1 − n′

mh2

T
+

1
2
n′

mh2

T

2

+ · · ·
]
dν.

(53)

The first term in equation (53) arises from self-
magnetization, while others are contributed by the ex-
ternal field. It indicates that magnetic properties of the
present model at high temperature is dominated by
Curies’s law, χ ∝ 1

T .

6.2 The strong-coupling limit

In the strong coupling limit, (c→ ∞), from equation (44)
we have:

ε(k) = k2 − µ− h1 + h2

2
. (54)

Then the free energy can be simplified as

F

L
= µD − 2

3π
µ3/2

[
1 +

π2k2T 2

8µ2

]
, (55)

where the external field is omitted. With the help of the
density ρ = 1

2π
1

1+e(k2−µ)/T
, and at T = 0, the quasi-Fermi

surface is just the square root of the chemical potential,
µ0 = π2D2. At low temperature, D is determined by

D =
1
2π

∫ ∞

−∞

1
1 + e(k2−µ)/T

dk, (56)

then the chemical potential satisfy the following relation

µ = π2D2

[
1 − π2k2T 2

24µ2

]−2

. (57)

At low temperature, the term proportional to T 2 is very
small, so it is reasonable to replace µ by µ0 then

µ = µ0

[
1 − π2k2T 2

24µ2

]−2

, (58)

and the free energy becomes

F

L
= µ0D

[
1 +

π2

12
k2T 2

µ2
0

]
− 2

3π
µ

3
2
0

[
1 +

π2k2T 2

4µ2
0

]
. (59)

Using S = −∂F
∂T and Cv = ∂S

∂T , we find the specific heat
at low temperature is Fermi-liquid like

S = Cv =
T

6D
. (60)

In the strong-coupling regime for the contribution of the
charge rapidities and λ, ν strings to ε(k) vanishes, so the
above result is same to the one-component case.
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7 Summary

In summary, we solved the problem of SU(2)×SU(2)
bosons with repulsive δ interaction in one dimension
by the nested Bethe-ansatz method. The corresponding
Bethe-ansatz equations are clearly different from that of
other boson system with different symmetry. On the ba-
sis of these equations, we found that the ground state of
this system is “ferromagnetic state”, that is, both free-
doms of isospin and band are frozen at zero temperature.
The low-lying excitations are studied both numerically
and analytically, though some of them are the same to
that of other bosonic systems. The thermodynamic prop-
erties have also been discussed by means of the thermody-
namic Bethe-ansatz method. We found that the magnetic
properties of the system at high temperature satisfy the
Curie’s law and the specific heat in the strong coupling
limit is a linear function of T at low temperature.

This work is supported by NSFC No.10225419 and
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